
cpk

Andrea F. Daniele

Jan 20, 2022

CONTENTS:

1 Introduction 3

2 Features 5

3 Installation 7

4 Get Started 9
4.1 Create an empty project . 9
4.2 Build the project . 9
4.3 Run the project . 10

5 Add code to a project 11
5.1 Launchers . 11
5.2 Create a Python Package . 11

6 Add dependencies to a project 13
6.1 Add apt dependency . 13
6.2 Add pip dependency . 13

7 Use remote machines 15
7.1 Create a Machine . 15
7.2 List Machines . 16
7.3 Remove a Machine . 16
7.4 Use a Machine . 16

8 Indices and tables 19

i

ii

cpk

cpk is a toolkit that standardize the way code in a project is structured and packaged for maximum portability, readability
and maintainability.

CONTENTS: 1

cpk

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

cpk stands for Code Packaging toolKit and is designed to standardize the way code in a project is structured and
packaged for maximum portability, readability and maintainability.

cpk is the result of years of experience in the context of cross-user, cross-machine, cross-architecture development and
deployment of software modules. Originally created to standardize and simplify code development and deployment in
Duckietown, it later became an independent toolkit.

3

https://duckietown.org

cpk

4 Chapter 1. Introduction

CHAPTER

TWO

FEATURES

cpk organizes code in projects. A cpk project is a directory containing everything that is needed for the project to be
built, packaged, documented and deployed.

The power of cpk comes from the technologies it is built on:

• Python (for cross-platform availability);

• Git (for code versioning);

• Catkin (for source code packaging and dependencies management);

• Docker (for code packaging and deployment);

• QEMU (for cross-platform code building and deployment);

• SSH (for fast and secure communication between build and deployment nodes);

• rsync (for reliable code synchronization);

The next two sections will jump straight into how to install cpk, then build and run a simple cpk project. Don’t miss
them.

5

cpk

6 Chapter 2. Features

CHAPTER

THREE

INSTALLATION

You can install cpk through pip.

$ pip3 install cpk

7

cpk

8 Chapter 3. Installation

CHAPTER

FOUR

GET STARTED

We will now create, build and run an empty project, we will then take a step back and examine how to populate the
project with your own code.

4.1 Create an empty project

Use the following command to create an empty cpk project.

$ cpk create ./my_project

You will be asked to provide information about your new project. For example,

cpk| INFO : Please, provide information about your new project:
|
| Project Name: my_project
| Project Description: My best project
| Owner Username: afdaniele
| Owner Full Name: Andrea Daniele

4.2 Build the project

Now that our empty project is created, let’s build it.

$ cd ./my_project
$ cpk build

Let it build and you will see a summary of the build that looks like the following,

...
==
Final image name: afdaniele/my_project:latest-amd64
Base image size: 120.25 MB
Final image size: 120.25 MB
Your image added 1.08 KB to the base image.

Layers total: 48
- Built: 48
- Cached: 0

(continues on next page)

9

cpk

(continued from previous page)

Image launchers:
- default

Time: 5 seconds
Documentation: Skipped
==

This means that the project was built successfully, now let’s run it.

4.3 Run the project

$ cpk run

You will see the following output,

...
==> Entrypoint
<== Entrypoint
This is an empty launch script. Update it to launch your application.

This means that our project run correctly. Congratulations, you just built and run your first cpk project.

The following sections will teach you how to,

• Add code to a project;

• Use remote machines;

10 Chapter 4. Get Started

CHAPTER

FIVE

ADD CODE TO A PROJECT

Code in cpk project is organized in packages. cpk supports:

• Catkin Packages;

• Python 3 (Module) Packages;

Both Catkin and Python packages are basically directories with a specific structure. Place your Catkin and Python
packages inside the packages/ directory in your cpk project. This is enough for cpk to detect them and configure
them for use inside the Docker container.

Let’s see how to add packages to our project.

5.1 Launchers

Before we can dive into how to add code to a cpk project, let’s talk about the concept of launchers. A launcher is an
executable file that you can pick as the entrypoint when your project runs. In other words, the launcher will be the first
process that gets executed in the container when we do cpk run.

A cpk project can have multiple launchers, and they are stored in the launchers/ directory at the root of our cpk
project. There is always a default launcher inside that directory. The default launcher is a bash script that prints out the
string “This is an empty launch script. Update it to launch your application.” and exits. And that is exactly what you
see when you execute the command cpk run from inside a newly created project.

Any executable file, or script file beginning with a shebang, is detected by cpk as a valid launcher.

Changing the content of the default launcher is usually enough for simple applications, but more complex projects
might need multiple launchers, you can create as many as you need inside the launchers directory.

An example of multi-launcher project could be one in which the default launcher runs an application in “Release” mode
while a secondary debug launcher launches it in “Debug” mode.

Use the argument -L/--launcher of cpk run to run a non-default launcher.

5.2 Create a Python Package

From the root of a cpk project, let’s move to the packages directory and create a Python package inside called
my_python_package that is compliant with the schema of a Python package. If you are not familiar with the Python
package schema, you can learn more by reading the official documentation.

$ cd ./packages/
$ mkdir ./my_python_package

(continues on next page)

11

http://wiki.ros.org/ROS/Tutorials/catkin/CreatingPackage
https://docs.python.org/3/tutorial/modules.html#packages
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://docs.python.org/3/tutorial/modules.html#packages

cpk

(continued from previous page)

$ cd ./my_python_package
$ touch __init__.py

The snippet above creates the simplest Python package possible, which consists of an empty directory called
my_python_package containing an empty file called __init__.py.

We can now add a Python module to the Python package we just created. Let’s create a very simple module called
main.py inside the directory my_python_package/ with the following content,

if __name__ == "__main__":
print("Hello from Python")

The module above implements the classic Python “Hello world” example. Let’s build it and run it using cpk. We
will begin by telling our default launcher that this is new module is the application we want to run. We can do so by
updating the content of the file launchers/default.sh to the following,

#!/bin/bash
python3 -m my_python_package.main

We can now build and run our project using the commands,

$ cpk build
$ cpk run

If everything went well, we should see something like the following,

...
Hello from Python

This is all we need to know to start packing our cpk projects with custom code. As you might have noticed, cpk took
care of discovering our my_python_package package and adding it to the PYTHONPATH environment variable.

12 Chapter 5. Add code to a project

CHAPTER

SIX

ADD DEPENDENCIES TO A PROJECT

Dependencies are libraries and tools our application relies on at build or run-time. They are usually installed via
package managers, like Aptitude (apt or apt-get), the Python Package Index’s pip, etc. cpk supports both apt
and pip3 package managers.

6.1 Add apt dependency

We can list our dependency packages installable through the apt package manager in the file dependencies-apt.txt
available at the root of our cpk project.

cpk allows us to add comments and blank lines in this file, this is useful when we want to group dependencies together
and keep track of what each dependency is needed for. For example, a valid apt dependencies file is the following,

generic tools (this is a comment)
git

dependencies for feature A
libA
libB

dependencies for feature B
libC

6.2 Add pip dependency

We can list our dependency packages installable through the pip3 package manager in the file dependencies-py3.
txt available at the root of our cpk project.

Similar to what we can do in dependencies-apt.txt, cpk allows us to add comments and blank lines in this file.

A valid pip3 dependencies file is the following,

generic tools (this is a comment)
numpy
scipy

dependencies for feature A
flask

13

cpk

14 Chapter 6. Add dependencies to a project

CHAPTER

SEVEN

USE REMOTE MACHINES

The term machine in cpk is used to indicate an endpoint, that is reachable over the internet and on which we want to
build and run our projects.

It is convenient to let cpk handle our machines, so that we don’t have to insert passwords or type in long and hard to
remember hostnames or IP addresses.

For example, we are working on a new project and we want to be able to test it on a workstation in our office while we
are working from home, maybe using a not too powerful laptop. In this case, we would register our workstation as a
cpk machine and then tell cpk to build and run our project there instead of our laptop.

Machines are managed using the command cpk machine.

7.1 Create a Machine

Using the example above, we assume that our workstation is reachable at the IP address 10.0.0.1. We have two ways
of connecting to our workstation, TCP or SSH.

7.1.1 Create an SSH Machine (recommended)

We assume that our workstation is configured to accept SSH connections and that we have an account with username
myuser on our workstation.

We create a cpk machine called myws using the command,

$ cpk machine create myws myuser@10.0.0.1

Connections based on SSH are made using 2048 bit RSA keypairs that cpk creates and exchanges with the destination
machine. For cpk to install the key on the destination, we will be prompted to insert the user password.

Note: The SSH password is only needed to transfer the keys, it is not stored and/or used by cpk for anything else.

Once the keys are transferred, we are ready to use the new machine.

15

cpk

7.1.2 Create a TCP Machine (unsecure, not recommended)

Warning: TCP connections are not encrypted and require that the destination exposes the Docker endpoint to the
network. This is very dangerous and only suggested within a private local network.

We create a cpk machine called myws using the command,

$ cpk machine create myws 10.0.0.1

7.2 List Machines

We can list the machines stored by cpk by running the command,

$ cpk machine list

A shortcut for the command above is cpk machine ls.

7.3 Remove a Machine

We can remove a machine called myws using the command,

$ cpk machine remove myws

A shortcut for the command above is cpk machine rm.

7.4 Use a Machine

You can think of cpk as having a default machine that gets created when you install it, pointing to your local Docker
endpoint.

Once your machine is created, you can redirect all your cpk commands towards it, instead of the default (local) machine.
In order to do so, pass the argument -H/--machine <MACHINE> to your cpk commands.

Note:

The value of <MACHINE> can be:

• The name of a machine you previously created (e.g., myws);

• A (resolvable) hostname of a machine exposing the TCP socket for Docker;

• An IP address of a machine exposing the TCP socket for Docker;

For example, we can show information about the endpoint a machine points to with the command,

$ cpk endpoint info -H myws

This will show you information about the Docker endpoint the machine myws is pointing to, for example,

16 Chapter 7. Use remote machines

cpk

cpk| INFO : CPK - Code Packaging toolKit - v0.0.4
cpk| INFO : Retrieving info about Docker endpoint...
|
| Docker Endpoint:
| Machine: myws
| Hostname: myws
| Operating System: Ubuntu 20.04.2 LTS
| Kernel Version: 5.4.0-74-generic
| OSType: linux
| Architecture: x86_64
| Total Memory: 251.64 GB
| CPUs: 64
|

You can build and run your cpk projects against a machine, with cpk build -H myws and cpk run -H myws.

7.4. Use a Machine 17

cpk

18 Chapter 7. Use remote machines

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

19

	Introduction
	Features
	Installation
	Get Started
	Create an empty project
	Build the project
	Run the project

	Add code to a project
	Launchers
	Create a Python Package

	Add dependencies to a project
	Add apt dependency
	Add pip dependency

	Use remote machines
	Create a Machine
	Create an SSH Machine (recommended)
	Create a TCP Machine (unsecure, not recommended)

	List Machines
	Remove a Machine
	Use a Machine

	Indices and tables

